Multi-scale Classification using Localized Spatial Depth

نویسندگان

  • Subhajit Dutta
  • Soham Sarkar
  • Anil K. Ghosh
چکیده

In this article, we develop and investigate a new classifier based on features extracted using spatial depth. Our construction is based on fitting a generalized additive model to posterior probabilities of different competing classes. To cope with possible multi-modal as well as non-elliptic nature of the population distribution, we also develop a localized version of spatial depth and use that with varying degrees of localization to build the classifier. Final classification is done by aggregating several posterior probability estimates, each of which is obtained using this localized spatial depth with a fixed scale of localization. The proposed classifier can be conveniently used even when the dimension of the data is larger than the sample size, and its good discriminatory power for such data has been established using theoretical as well as numerical results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Object-based Vs Pixel-based Mapping of Fire Scars Using Multi-scale Satellite Data

Assessment and mapping of burned areas using satellite data has been implemented so far at local, regional and global scale, by employing various image analysis techniques, according to the spectral and spatial characteristics of the remotely sensed data. The spatial resolution of satellite data together with landscape configuration guides of the decision for the classification approach to be a...

متن کامل

Application of multivariate techniques in-line with spatial regionalization of AOD over Iran

Application of multivariate techniques in-line with spatial regionalization of AOD over Iran Introduction Models, satellites and terrestrial datasets have been used to detect and characterize aerosol. Nontheless, micoscale classification using remote sensing parameters considers as a deficiency. Thus, regionalizion and modeling aerosol without regard to political boundaries or a specific s...

متن کامل

Depth estimation of gravity anomalies by S-transform of analytic signal

The S-transform has widely been used in the analysis of non-stationary time series. A simple method to obtain depth estimates of gravity field sources is introduced in this study. We have developed a new method based on the spectral characteristics of downward continuation to estimate depth of structures. This calculation procedure is based on replacement of the Fourier transform with the S-Tra...

متن کامل

Realization of Data Mining Model for Expert Classification Using Multi-scale Spatial Data

Data mining models show great efficiency on acquiring knowledge for expert system classification. This study aimed at mining knowledge contained in landscape from multi-scale spatial data using decision tree learning model and evaluating the classification quality influenced by different scales of spatial data. Firstly, spatial data containing remote sensing images of different spatial and spec...

متن کامل

Mapping urban land cover using multi-scale and spatial autocorrelation information in high resolution imagery

iii ACKNOWLEDGEMENTS I would like to thank my advisor, Dr. Zhixiao Xie, for all of his support and advice over the last several years. I also want to thank Dr. for their support and ideas that helped improve this dissertation. I had a great time working with and learning from all of you, and you made this experience an enjoyable one. Finally, I would like to thank the Broward County Property Ap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Machine Learning Research

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2016